Chessboard Pdf Open Cv Python Tutorial
3/25/2018 admin
Basics This is going to be a small section. During the last session on camera calibration, you have found the camera matrix, distortion coefficients etc. Given a pattern image, we can utilize the above information to calculate its pose, or how the object is situated in space, like how it is rotated, how it is displaced etc. For a planar object, we can assume Z=0, such that, the problem now becomes how camera is placed in space to see our pattern image. So, if we know how the object lies in the space, we can draw some 2D diagrams in it to simulate the 3D effect. Let’s see how to do it.
Camera calibration with square chessboard¶ The goal of this tutorial is to learn how. (img, boardSize, ptvec, CV_CALIB. Camera calibration with square chessboard. OpenCV-Python Tutorials. 1 release is finally ready, right before the XMas holidays. This is the first stabilization. Opencv Chessboard Pdf. This tutorial explains how to use camera- calib to. The OpenCV Tutorials. The OpenCV Tutorials. OpenCV-Python Tutorials Documentation. This tutorial is not. OpenCV comes with a 9x7 Chessboard in the name of 'pattern.pdf' under OpenCV/docs directory. Welcome to OpenCV-Python Tutorials’s.
Our problem is, we want to draw our 3D coordinate axis (X, Y, Z axes) on our chessboard’s first corner. X axis in blue color, Y axis in green color and Z axis in red color. So in-effect, Z axis should feel like it is perpendicular to our chessboard plane.
First, let’s load the camera matrix and distortion coefficients from the previous calibration result. Def draw ( img, corners, imgpts ): corner = tuple ( corners [ 0 ]. Ravel ()) img = cv2. Line ( img, corner, tuple ( imgpts [ 0 ]. Ravel ()), ( 255, 0, 0 ), 5 ) img = cv2. Line ( img, corner, tuple ( imgpts [ 1 ]. Ravel ()), ( 0, 255, 0 ), 5 ) img = cv2.
Line ( img, corner, tuple ( imgpts [ 2 ]. Ravel ()), ( 0, 0, 255 ), 5 ) return img Then as in previous case, we create termination criteria, object points (3D points of corners in chessboard) and axis points. Axis points are points in 3D space for drawing the axis. We draw axis of length 3 (units will be in terms of chess square size since we calibrated based on that size). So our X axis is drawn from (0,0,0) to (3,0,0), so for Y axis.
For Z axis, it is drawn from (0,0,0) to (0,0,-3). Negative denotes it is drawn towards the camera. Criteria = ( cv2. TERM_CRITERIA_EPS + cv2. TERM_CRITERIA_MAX_ITER, 30, 0.001 ) objp = np. Zeros (( 6 * 7, 3 ), np. Float32 ) objp [:,: 2 ] = np.
Mgrid [ 0: 7, 0: 6 ]. Reshape ( - 1, 2 ) axis = np.
Float32 ([[ 3, 0, 0 ], [ 0, 3, 0 ], [ 0, 0, - 3 ]]). Gallup Racer 2006 Ps2 Iso Roms. Reshape ( - 1, 3 ) Now, as usual, we load each image.
Search for 7x6 grid. If found, we refine it with subcorner pixels. Then to calculate the rotation and translation, we use the function, cv2.solvePnPRansac(). Once we those transformation matrices, we use them to project our axis points to the image plane. In simple words, we find the points on image plane corresponding to each of (3,0,0),(0,3,0),(0,0,3) in 3D space. Once we get them, we draw lines from the first corner to each of these points using our draw() function.
For fname in glob. Glob ( 'left*.jpg' ): img = cv2.
Imread ( fname ) gray = cv2. CvtColor ( img, cv2. COLOR_BGR2GRAY ) ret, corners = cv2. FindChessboardCorners ( gray, ( 7, 6 ), None ) if ret == True: corners2 = cv2. CornerSubPix ( gray, corners,( 11, 11 ),( - 1, - 1 ), criteria ) # Find the rotation and translation vectors. Rvecs, tvecs, inliers = cv2. SolvePnPRansac ( objp, corners2, mtx, dist ) # project 3D points to image plane imgpts, jac = cv2.